

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 1CR and Science
(Double Award) (4SD0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P70703A

Publications Code 4CH1_1CR_2201_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	C red is correct because litmus indicator in an acidic solution is red		1
	A is incorrect because litmus indicator in an acidic solution is not blue B is incorrect because litmus indicator in an acidic solution is not orange D is incorrect because litmus indicator in an acidic solution is not yellow		
1 (b)	C 7 is correct because the pH value of a neutral solution is 7 A is incorrect because the pH value of a neutral solution is not 0 B is incorrect because the pH value of a neutral solution is not 4 D is incorrect because the pH value of a neutral solution is not 14		1

Question number	Answer	Notes	Marks
1 (c)	D is correct because a solution with a pH value of 9 is weakly alkaline		1
	A is incorrect because a solution with a pH value of 9 is not strongly acidic B is incorrect because a solution with a pH value of 9 is not strongly alkaline C is incorrect because a solution with a pH value of 9 is not weakly acidic		
1 (d)	A is correct because HNO ₃ is the chemical formula of an acid B is incorrect because H ₂ O is not the chemical formula of an acid C is incorrect because NaCl is not the chemical formula of an acid D is incorrect because NaOH is not the chemical formula of an acid		1

Question number	Answer	Notes	Marks
1 (e)	neutralisation	ALLOW exothermic	1
1 (f)	M1 potassium chloride	ACCEPT in either order	2
	M2 water	ALLOW correct chemical formulae	

Total for Question 1 = 7 marks

	Question number		Answer	Notes	Marks
2	(a)	(i)	(solute is) the substance/solid that dissolves (in a solvent) OWTTE		1
		(ii)	(solvent is) the substance/liquid the solute/solid/substance dissolves in OWTTE		1
	(b)		M1 (saturated solution) contains as much dissolved solute/solid/substance as possible OWTTE		2
			M2 at a particular temperature		
	(c)		M1 process called diffusion		2
			M2 particles spread out (evenly throughout water/solution/liquid)	ALLOW particles move from area of high concentration to area of low concentration	

Total for Question 2 = 6 marks

Question number	Answer	Notes	Marks
3 (a)	M1 (same) solvent	ALLOW (same) named solvent eg water	2
	M2 (same type of chromatography) paper	IGNORE reference to size/length of paper	
		ALLOW reference to use of pencil (for start line)/spots must start on horizontal line /solvent must start below line or spots ALLOW same distance travelled by solvent IGNORE distance of line from bottom of paper IGNORE amount/volume/concentration of solvent /references to size/volume of dyes or spots /references to temperature/time	
3 (b) (i)	C is insoluble (in the solvent)		1
(ii)	M1 Student 2 and dye D/(R _f value) 1.20		2
	$\mbox{\bf M2}$ because R_f value must be less than 1 / cannot be greater than 1	ALLOW spot cannot move further than solvent front OWTTE	-

Question number	Answer	Notes	Marks
3 (c)	M1 ($R_f = \frac{9.7}{12}$		3
	M2 = 0.808(33)	0.808(33) with no working scores M1 and M2	
		ALLOW M2 ECF if used 10.7 or 13 and R _f < 1	
		ALLOW 1 mark for $\frac{12}{9.7}$ = 1.2(37)	
	M3 = 0.81 (to 2 SF)	ALLOW M3 ECF M2 (must be correct to 2 SF)	
		0.81 with no working scores 3	

Total for Question 3 = 8 marks

	Question number		Answer	Notes	Marks
4	(a)		number of protons (in nucleus of atom)	IGNORE references to electrons	1
4	(b)	(i)	 D 29 is correct because mass number = total number of protons and neutrons = 14 + 15 = 29 A is incorrect because 14 is the number of protons B is incorrect because 15 is the number of neutrons C is incorrect because 28 is the number of protons + the number of electrons 		1
4	(b)	(ii)	M1 (group) 4 M2 because 4 electrons in outer shell	ALLOW electronic configuration is 2.8.4	2

Question number	Answer	Notes	Marks
4 (c)	M1 (32 x 95.0) + (33 x 0.75) + (34 x 4.25) 100		3
	OR (3040) + (24.75) + (144.5) 100		
	M2 = 32.0925	32.09(25) with no working scores 2 ALLOW 1 mark for 3209.25 ALLOW M2 ECF M1 if minor error in calculation using all 3 isotopes	
	M3 = 32.1 (1 dp)	correct answer to 1 dp with or without working scores 3 ALLOW M3 ECF M2 (must be correct to 1 dp)	

Total for Question 4 = 7 marks

	Quest		Answer	Notes	Marks
5	numb (a)	er	(good) conductors of electricity / malleable	ACCEPT (good) conductors of heat/ductile/have basic oxides/hydroxides ALLOW high density/ high melting point/ sonorous/shiny/hard/ strong	1
5	(b)		M1 (in mercury) particles can move/flow OWTTE M2 (in solid metal) particles do not move /are in fixed positions	IGNORE references to spacing/gaps between particles / energy of particles ACCEPT particles vibrate (about fixed position)	2
5	(c)	(i)	(bright) white flame	ALLOW white light ACCEPT white solid/ash/powder (formed)	1
5	(c)	(ii)	(product/magnesium oxide is) basic / a base	ALLOW (product/magnesium oxide) neutralises acid / dissolves in/reacts with acid /(produces) alkali (when added to water) REJECT if incorrect product given	1
5	(d)	(i)	magnesium/sulfur would react with/ burn in oxygen	ACCEPT magnesium oxide (not magnesium sulfide) would be formed ALLOW sulfur dioxide would be formed	1
5	(d)	(ii)	 M1 magnesium (atom) loses two electrons M2 sulfur (atom) gains two electrons (from magnesium) M3 charge on magnesium (ion) 2+/Mg²+ AND charge on sulfur/sulfide (ion) 2-/ S²- 	two electrons transferred from magnesium (atom) to sulfur (atom) scores M1 and M2	3

Question number	Answer	Notes	Marks
5 (d) (iii)	M1 strong (electrostatic) force of attraction	ALLOW strong ionic bonds but No M1 or M2 if between atoms/molecules or any reference to intermolecular forces / covalent bonds	3
	M2 between magnesium ions/Mg ²⁺ and sulfide ions/S ²⁻ ions	ACCEPT between oppositely charged ions ACCEPT between positive and negative ions	
	M3 large amount/lot of (heat/thermal) energy needed to overcome forces/attraction	ACCEPT large amount/lot of (heat/thermal) energy needed to break the bonds IGNORE more energy	
		overcoming / breaking intermolecular forces / covalent bonds	
5 (d) (iv)	$MgS + 2HCl \rightarrow MgCl_2 + H_2S$	IGNORE state symbols	2
	M1 all formulae correct		
	M2 correctly balanced	M2 DEP M1	
		ACCEPT multiples and fractions	

Total for Question 5 = 14 marks

	Question number	Answer	Notes	Marks
6	(a)	136		1
6	(b)	M1 simplest (whole number) ratio of atoms present (in a compound)	ALLOW elements for atoms ALLOW C : H ratio 5:8	2

Question number	Answer	Notes	Marks
6 (c)	unsaturated hydrocarbon because		3
	M1 contains (carbon to carbon) double bond(s)		
	M2 contains carbon and hydrogen (atoms)	REJECT molecules	
	M3 only	M3 DEP on mention of carbon and hydrogen	
6 (d) (i)	A addition		1
	B is incorrect because the type of reaction between an alkene and bromine is addition not polymerisation		
	C is incorrect because the type of reaction between an alkene and bromine is addition not precipitation		
	D is incorrect because the type of reaction between an alkene and bromine is addition not substitution		

Question number			Answer	Notes	Marks	
	6	(d)	(ii)	ocimene contains more than one double bond /three double bonds		1

Question number	Answer	Notes	Marks
6 (e)	$C_{10}H_{16} + 14O_2 \rightarrow 10CO_2 + 8H_2O$		2
	M1 CO ₂ + H ₂ O	ACCEPT in either order	
	M2 correctly balanced	M2 DEP M1 ACCEPT multiples or fractions	
6 (f) (i)	M1 carbon/C/soot M2 carbon monoxide/CO	ACCEPT M1 M2 in either order	2
(ii)	(carbon monoxide/CO) reduces capacity of blood to carry oxygen OWTTE	ACCEPT correct references to haemoglobin / carboxyhaemoglobin	1

Total for Question 6 = 13 marks

Question number	Answer	Notes	Marks
7 (a)	M1 breaking up/down of a compound/substance OWTTE	REJECT elements	2
	M2 by heat(ing)	REJECT any references to heat being given out/exothermic	
(b)	examples of calculation of maximum mass of K ₂ CO ₃		4
	M1 M_r of KHCO ₃ = 100 AND M_r of K_2CO_3 = 138		
	M2 200 g KHCO ₃ produces 138 g K ₂ CO ₃		
	M3 2.50 g KHCO ₃ produces $\frac{138 \times 2.50}{200}$ =		
	M4 1.725 (g K ₂ CO ₃)	ALLOW 2 or more SF	
		M2 M3 M4 ECF M1	
		correct answer with or without working scores 4	
	OR	Scores 4	
	M1 M _r of KHCO ₃ = 100 AND M _r of K_2CO_3 = 138		
	M2 amount KHCO ₃ = $\frac{2.50}{100}$ = 0.025 (mol)		
	M3 amount $K_2CO_3 = 0.025 = 0.0125$ (mol)		
	M4 mass K_2CO_3 (= 0.0125 x 138) = 1.725 (g)	ALLOW 2 or more SF	
		M2 M3 M4 ECF M1	
		correct answer with or without working scores 4	
		3.45/3.46/3.5/6.9 scores 3	

Total for Question 7 = 6 marks

	Question		Answer	Notes	Marks
8	(a)		$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$		1
			all state symbols correct		
8	all clip with graph	(b) (i)	all points correctly plotted (within +/- half a square)		1
		(ii)	circle around point at 6 min		1
		(iii)	smooth curve of best fit		1
		(iv)	student took reading too soon/before 6 min		1
		(v)	mass from graph at 6 min	IGNORE UNITS	1
8	(c)	(i)	M1 curve becomes less steep /gradient decreases (as time increases)		2
			M2 so rate of reaction decreases	M2 DEP M1	
		(ii)	the (sulfuric) acid was in excess OWTTE	ALLOW not all (sulfuric) acid reacted ALLOW zinc was limiting reagent ALLOW zinc was not in excess	1

	Question	Answer	Notes	Marks
	number		.,	
8	(d)	M1 magnesium (more reactive than zinc so) would make reaction faster/increase the rate	REJECT reference to different surface area	3
		M2 less concentrated acid would make reaction slower/decrease the rate	REJECT references to differences in energy/speed of particles	
		M3 (so) difficult/impossible to know whether rate will increase or decrease overall OWTTE	ALLOW difficult/impossible to know which change has greater effect OWTTE	
			ALLOW idea of difficult/impossible to predict (overall) effect of changing two factors at same time OWTTE	
			ALLOW idea of difficult/impossible to know if changes cancel each other out OWTTE	
8	(e)	M1 at higher temperature particles have more (kinetic) energy	ACCEPT more particles have the required activation energy ALLOW particles move faster	3
		M2 more (successful) collisions per unit time	ALLOW more frequent (successful) collisions	
		M3 rate of reaction increases		

Total for Question 8 = 15 marks

Question number	Answer	Notes	Marks
9 (a)	M1 copper(II) carbonate is green M2 copper(II) carbonate is insoluble/cannot form a solution OWTTE	IGNORE is not white/is a different colour	2
9 (b)	Description including six of following points (Test for potassium ions) M1 flame test M2 lilac flame	ALLOW description of flame test	6
	(Test for carbonate ions) M3 add acid (to mixture of solids/solution)	ALLOW any named acid IGNORE references to concentration	
	 M4 (pass/bubble) gas/carbon dioxide into limewater M5 which goes cloudy/milky / white ppt forms (Test for iodide ions) M6 (add dilute nitric acid followed by) silver nitrate (solution) M7 yellow ppt/solid 	M4 DEP on M3 M5 DEP on mention of limewater	
		M7 DEP on mention of silver nitrate	

Total for Question 9 = 8 marks

Qu	estio	n number	Answer	Notes	Marks	
10	(a)		contain water of crystallisation /are hydrated		1	
10	(b)	(i)	3.18g		1	
		(ii)	3.78g		1	
		(iii)	calculation with following steps		3	
			M1 calculate moles of Na ₂ CO ₃			
			M2 calculate moles of H ₂ O			
			M3 divide each by smaller to obtain ratio 1:7			
			example calculation:			
			$M1 \frac{3.18}{106} = 0.03$	ALLOW ECF from (i)		
			$M2 \frac{3.78}{18} = 0.21$	ALLOW ECF from (ii)		
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
			Alternative method:			
			M1 (If formula is Na_2CO_3 .7 H_2O products will form in ratio) 106 g Na_2CO_3 : 126 g H_2O			
			M2 so mass of water that forms with 3.18 g Na ₂ CO ₃ should = $\frac{(126 \times 3.18)}{106}$			
			M3 = 3.78 g so formula is correct			
	(c)	(i)	explanation including		2	
			M1 not heated crystals (for long) enough			
			M2 so not all water removed/evaporated OWTTE			
		(ii)	M1 repeat heating (and cooling)	ALLOW host for langer	2	
			M2 until constant mass OWTTE	ALLOW heat for longer		

Total for Question 10 = 10 marks

Question	Answer	Notes	Marks
number 11 (a)	Award 1 mark each for any six of the following:		6
	Method 1		
	M1 polystyrene (insulator so) reduces/prevents heat loss (to atmosphere) OWTTE		
	M2 no lid so heat/thermal energy will be lost (to atmosphere)		
	M3 stirring will ensure even temperature / more accurate (highest) temperature OWTTE	ALLOW references to heat/thermal energy evenly spread (throughout solution) OWTTE	
		IGNORE references to increases rate of reaction	
	M4 no lid so possibility of spillage OR		
	polystyrene cup (containing thermometer) unstable/may fall over OWTTE		
	Method 2		
	M5 glass bottle poor insulator so heat/thermal energy loss occurs OWTTE		
	M6 bung helps reduce/prevent heat/thermal energy loss (to atmosphere)		
	M7 bung so no spillage		
	M8 cannot stir so cannot ensure even temperature / cannot ensure accurate (highest) temperature OWTTE	ALLOW references to heat /thermal energy not evenly spread (throughout solution) OWTTE	

11	(b)	M1 0.025 mol CuSO₄ reacts with 0.025 mol Zn	ALLOW reference to 1:1 molar ratio or (only) 0.025 mol Zn needed	2
		M2 mass Zn needed = 0.025 x 65 = 1.625 g	M2 subsumes M1	
		(3g > 1.625g so having 3g Zn is excess)		
		OR		
		M1 0.025 mol CuSO₄ reacts with 0.025 mol Zn	ALLOW reference to 1:1 molar ratio or (only) 0.025 mol 7n needed	
		M2 3g Zn = $\frac{3}{65}$ = 0.046 mol	0.025 mot zn needed	
		(0.046 > 0.025 so having 3g Zn is excess)		

Question number	Answer	Notes	Marks
11 (c) (i)	M1 calculation of temperature rise M2 correct substitution into Q = m x 4.2 x temp rise M3 correct evaluation of Q Example calculation M1 (40.6 - 21.1) OR 19.5 M2 Q = 50 x 4.2 x 19.5 M3 = 4100 (J)	ALLOW 4095 IGNORE sign	3
(ii)	M1 answer to (i) ÷ 0.025 M2 correct evaluation in J M3 correct conversion to kJ and minus sign Example calculation M1 4095 ÷ 0.025 M2 = 163 800 (J) M3 = -160 kJ	ACCEPT use of 4000 ACCEPT 160 000/ 164 000 ACCEPT -163.8/-164 160/163.8/164 scores 2	3
11 (d)	M1 Zn/zinc is oxidised because loses electrons M2 Cu ²⁺ /copper ions reduced because gains electrons		2

Total for Question 11 = 16 marks

Total for paper = 110 marks